Annular dynamics of the human heart : novel echocardiographic approaches to assess ventricular function

University dissertation from Linköping : Linköpings universitet

Abstract: The complex myocardial fiber architecture of the left ventricle (LV) enables long-axis motion (annular excursion), short-axis motion and also a small torsional deformation throughout the cardiac cycle. The contribution of the long-axis motion has proven to be important in generating ventricular filling and emptying, and the analysis of annular excursion has become a well established diagnostic tool for the assessment of ventricular function. Cardiac motion can be accurately described with modem non-invasive imaging teclmiques, and this is important ground for deeper understanding and more reliable diagnosis of cardiovascular disease. The focus of this thesis was to provide new insights into cardiac pump function using variables originating from the annular excursion and dynamic changes in shape, applying both established and novel echocardiographic imaging approaches.The traditional method of evaluating systolic ventricular fimction according to the total annular excursion overestimates the excursion amplitude in relation to true systolic fimction. A novel method presented here, measurement of the systolic annular excursion, more accurately reflects the timing of true systole, and was applied both in patients with heart disease and in healthy subjects. To date, the form of asynchronous myocardial motion called postsystolic shortening (PSS) has mainly been observed in the setting of myocardial ischemia. The significance of PSS in hypertensive heart disease remains incompletely described. We found that a subgroup of hypertensive patients with PSS along the LV long-axis had signs of more severe cardiac involvement unrelated to the level of blood pressure. Endurance trained subjects showed a larger LV long-axis motion as compared to strength trained and untrained controls. Mitral annular (MA) excursion correlated strongly to LV stroke volume, end-diastolic volume and maximal oxygen consumption per body weight, but weakly to LV ejection fraction. These findings provide further evidence of the importance of annular excursion to normal cardiac performance. In order to assess the contribution of MA excursion and shape dynamics to total LV volume change in humans, a novel 4-dimensional transesophageal echocardiography teclmique was developed. The excursion of the annulus accounted for an important portion (19±3%) of the total LV filling and emptying in healthy human subjects. Furthermore, our findings elucidate an atrial influence on MA physiology in humans, as well as a sphincter-like action of the MA. These temporal changes may facilitate ventricular filling by annular expansion during early and mid diastole, and aid competent valve closure during the marked decrease in annular area during late diastole and early systole.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.