Flexible Composition of Robot Logic with Computer Vision Services

Abstract: Vision-based robotics is an ever-growing field within industrial automation. Demands for greater flexibility and higher quality motivate manufacturing companies to adopt these technologies for such tasks as material handling, assembly, and inspection. In addition to the direct use in the manufacturing setting, robots combined with vision systems serve as highly flexible means for realization of prototyping test-beds in the R&D context. Traditionally, the problem areas of robotics and computer vision are attacked separately. An exception is the study of vision-based servo control, the focus of which constitutes control-theoretic aspects of vision-based robot guidance under assumption that robot joints can be controlled directly. The missing part is a systemic approach to implementing robotic application with vision sensing given industrial robots constrained by their programming interface. This thesis targets the development process of vision-based robotic systems in an event-driven environment. It focuses on design and composition of three functional components: (1) robot control function, (2) image acquisition function, and (3) image processing function. The thesis approaches its goal by a combination of laboratory results, a case study of an industrial company (Kongsberg Automotive AS), and formalization of computational abstractions and architectural solutions. The image processing function is tackled with the application of reactive pipelines. The proposed system development method allows for smooth transition from early-stage vision algorithm prototyping to the integration phase. The image acquisition function in this thesis is exposed in a service-oriented manner with the help of a flexible set of concurrent computational primitives. To realize control of industrial robots, a distributed architecture is devised, which supports composability of communication-heavy robot logic, as well as flexible coupling of the robot control node with vision services.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)