Structural changes during cellulose composite processing

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Two approaches for creating a new all-cellulose composite material have been studied: the biosynthesis of compartmentalised bacterial cellulose fibril aggregates and the compression moulding of commercial chemical wood pulps processed with only water. The objective was to study the structural changes during processing and the complexity of relating the mechanical properties of the final biocomposites to the nanoscale structure was highlighted.Solid-state CP/MAS 13C NMR spectroscopy was utilised to determine both the fibril aggregate width and the content of the different crystalline cellulose forms, cellulose I and cellulose II. Using this method, the quantities of hemicellulose present inside the fibre wall and localised at the fibre surfaces could be determined.The formation of cellulose fibrils was affected by the addition of hydroxyethylcellulose (HEC) to a culture medium of Acetobacter aceti, and the fibrils were coated with a thin layer of HEC, which resulted in loose bundles of fibril aggregates. The HEC coating, improved the fibril dispersion in the films and prevented fractures, resulting in a biocomposite with remarkable mechanical properties including improved strength (289 MPa), modulus (12.5 GPa) and toughness (6%).The effect of press temperature was studied during compression moulding of sulphite dissolving-grade pulps at 45 MPa. A higher press temperature yielded increases in the fibril aggregation, water resistance (measured as the water retention value) and Young’s modulus (12 GPa) in the final biocomposite. The high pressure was important for fibril aggregation, possibly including cellulose-cellulose fusion bonds, i.e., fibril aggregation in the fibre-fibre bond region. The optimal press temperature was found to be 170°C because cellulose undergoes thermal degradation at higher temperatures.The effect of hemicellulose was studied by comparing a softwood kraft paper-grade pulp with a softwood sulphite paper and a softwood sulphite dissolving-grade pulp. A significant fibril aggregation of the sulphite pulps suggested that the content and distribution of hemicellulose affected the fibril aggregation. In addition, the hemicellulose structure could influence the ability of the hemicellulose to co-aggregate with cellulose fibrils. Both sulphite pulp biocomposites exhibited Young’s moduli of approximately 12 GPa, whereas that of the kraft pulp was approximately half that value at 6 GPa. This result can be explained by a higher sensitivity to beating in the sulphite pulps.The effect of mercerisation, which introduces disordered cellulose, on the softwood sulphite dissolving-grade pulp was also studied under compression moulding at 170°C and 45 MPa. The mechanisms causing an incomplete transformation of cellulose I to II in a 12 wt% NaOH solution were discussed. The lower modulus of cellulose II and/or the higher quantity of disordered cellulose likely account for the decrease in Young’s modulus in the mercerised biocomposites (6.0 versus 3.9 GPa).