Membrane-bound proteins Characterization, evolution, and functional analysis

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: Alpha-helical transmembrane proteins are important components of many essential cell processes including signal transduction, transport of molecules across membranes, protein and membrane trafficking, and structural and adhesion activities, amongst others. Their involvement in critical networks makes them the focus of interest in investigating disease pathways, as candidate drug targets, and in evolutionary analyses to identify homologous protein families and possible functional activities. Transmembrane (TM) proteins can be categorized into major groups based the same gross structure, i.e., the number of transmembrane helices, which are often correlated with specific functional activities, for example as receptors or transporters. The focus of this thesis was to analyze the evolution of the membrane proteome from the last holozoan common ancestor (LHCA) through metazoans to garner insight into the fundamental functional clusters that underlie metazoan diversity and innovation. Twenty-four eukaryotic proteomes were analyzed, with results showing more than 70% of metazoan transmembrane protein families have a pre-metazoan origin. In concert with that, we characterized the previously unstudied groups of human proteins with three, four, and five membrane-spanning regions (3TM, 4TM, and 5TM) and analyzed their functional activities, involvement in disease pathways, and unique characteristics. Combined, we manually curated and classified nearly 11% of the human transmembrane proteome with these three studies. The 3TM data set included 152 proteins, with nearly 45% that localize specifically to the endoplasmic reticulum (ER), and are involved in membrane biosynthesis and lipid biogenesis, proteins trafficking, catabolic processes, and signal transduction due to the large ionotropic glutamate receptor family. The 373 proteins identified in the 4TM data set are predominantly involved in transport activities, as well as cell communication and adhesion, and function as structural elements. The compact 5TM data set includes 58 proteins that engage in localization and transport activities, such as protein targeting, membrane trafficking, and vesicle transport. Notably, ~60% are identified as cancer prognostic markers that are associated with clinical outcomes of different tumour types. This thesis investigates the evolutionary origins of the human transmembrane proteome, characterizes formerly dark areas of the membrane proteome, and extends the fundamental knowledge of transmembrane proteins.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)