GDNF and alpha-synuclein in nigrostriatal degeneration

University dissertation from Umeå : Umeå universitet

Abstract: Parkinson’s disease is a common neurological disorder with a complex etiology. The disease is characterized by a progressive loss of dopaminergic cells in the substantia nigra, which leads to motor function and sometimes cognitive function disabilities. One of the pathological hallmarks in Parkinson’s disease is the cytoplasmic inclusions called Lewy bodies found in the dopamine neurons. The aggregated protein α-synuclein is a main component of Lewy bodies. In view of severe symptoms and the upcoming of problematic side effects that are developed by the current most commonly used treatment in Parkinson’s disease, new treatment strategies need to be elucidated. One such strategy is replacing the lost dopamine neurons with new dopamine-rich tissue. To improve survival of the implanted neurons, neurotrophic factors have been used. Glial cell line-derived neurotrophic factor (GDNF), which was discovered in 1993, improves survival of ventral mesencephalic dopamine neurons and enhances dopamine nerve fiber formation according to several studies. Thus, GDNF can be used to improve dopamine-rich graft outgrowth into the host brain as well as inducing sprouting from endogenous remaining nerve fibers. This study was performed on Gdnf gene-deleted mice to investigate the role of GDNF on the nigrostriatal dopamine system. The transplantation technique was used to create a nigrostriatal microcircuit from ventral mesencephalon (VM) and the lateral ganglionic eminence (LGE) from different Gdnf gene-deleted mice. The tissue was grafted into the lateral ventricle of wildtype mice. The results revealed that reduced concentrations of GDNF, as a consequence from the Gdnf gene deletion, had effects on survival of dopamine neurons and the dopamine innervation of the nigrostriatal microcircuit. All transplants had survived at 3 months independently of Gdnf genotype, however, the grafts derived from Gdnf gene-deleted tissue had died at 6 months. Transplants with partial Gdnf gene deletion survived up to 12 months after transplantation. Moreover, the dopaminergic innervation of striatal co-grafts was impaired in Gdnf gene-deleted tissue. These results highlight the role of GDNF for long-term maintenance of the nigrostriatal dopamine system. To further investigate the role of GDNF expression on survival and organization of the nigrostriatal dopamine system, VM and LGE as single or combined to double co-grafts created from mismatches in Gdnf genotypes were transplanted into the lateral ventricle of wildtype mice. Survival of the single grafts was monitored over one year using a 9.4T MR scanner. The size of single LGE transplants was significantly reduced by the lack of GDNF already at 2 weeks postgrafting while the size of single VM was maintained over time, independently of GDNF expression. The double grafts were evaluated at 2 months, and the results revealed that lack of GDNF in LGE reduced the dopamine cell survival, while no loss of dopamine neurons was found in VM single grafts. The dopaminergic innervation of LGE was affected by absence of GDNF, which also caused a disorganization of the striatal portion of the co-grafts. Small, cytoplasmic inclusions were frequently found in the dopamine neurons in grafts lacking GDNF expression. These inclusions were not possible to classify as Lewy bodies by immunohistochemistry and the presence of phospho-α-synuclein and ubiquitin; however, mitochondrial dysfunction could not be excluded. To further study the death of the dopamine neurons by the deprivation of GDNF, the attention was turned to how Lewy bodies are developed. With respect to the high levels of α-synuclein that was found in the striatum, this area was selected as a target to inject the small molecule – FN075, which stimulates α-synuclein aggregation, to further investigate the role of α-synuclein in the formation of cytoplasmic inclusions. The results revealed that cytoplasmic inclusions, similar to those found in the grafts, was present at 1 month after the injection, while impairment in sensorimotor function was exhibited, the number of dopamine neurons was not changed at 6 months after the injection. Injecting the templator to the substantia nigra, however, significantly reduced the number of TH-positive neurons at 3 months after injection. In conclusion, these studies elucidate the role of GDNF for maintenance and survival of the nigrostriatal dopamine system and mechanisms of dopamine cell death using small molecules that template the α-synuclein aggregation.