Bringing Together Lean, Simulation and Optimization : Defining a framework to support decision-making in system design and improvement

Abstract: The rapid changes in the market including globalization, the requirement for personalizedproducts and services by the customers, shorter product life-cycles, the exponential growthof technological advances, and the demographical changes, will demand organizations toeffectively improve and design their systems in order to survive. This is the actual paradigmcharacterizing the industrial and service sectors. This scenario presents a considerablechallenge to decision makers who will need to decide about how to design and improve amore than ever complex system without compromising the quality of the decision taken.Lean, being a widely applied management philosophy with very powerful principles, itsmethods and tools are static in nature and have some limitations when it comes to the designand improvement of complex and dynamic systems. Some authors have proposed thecombined use of simulation with Lean in order to overcome these limitations. Furthermore,optimization and post-optimization tools coupled to simulation, provide knowledge aboutoptimal or nearly optimal system configurations to choose from. However, even if Leanprinciples, methods and tools, as well as simulation and optimization, pursue the objectiveof supporting organizations regarding system design and improvement, a bilateral approachfor their combination and its benefits have barely been addressed in the literature.Many studies focus only on how specific Lean tools and simulation can be combined, treatingLean purely as a toolbox and not considering how Lean can support the simulation process.The aim of this research is to address this knowledge gap by analyzing the mutualbenefits and presenting a framework for combining Lean, simulation and optimization tobetter support decision makers in system design and improvement where the limitationsof Lean tools and simulation are overcome by their combination. This framework includesa conceptual framework explaining the relationships between the Lean philosophy, methodsand tools with simulation and optimization; the purposes for this combination and stepby step processes to achieve these purposes; the identification of the roles involved in eachprocess; a maturity model providing guidelines on how to implement the framework; existingbarriers for the implementation; and ethical considerations to take into account. Anindustrial handbook has also been written which explains how to deploy the framework.The research has been conducted in three main stages including an analysis of the literatureand the real-world needs, the definition and formulation of the framework, and finally, itsevaluation in real-world projects and with subject matter experts. The main contributionof this research is the reflection provided on the bilateral benefits of the combination, aswell as the defined and evaluated framework, which will support decision makers take qualitydecisions in system design and improvement even in complex scenarios.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)