Synergy between Photovoltaic Power Generation and Electric Vehicle Charging in Urban Energy Systems : Optimization Models for Smart Charging and Vehicle-to-Grid

Abstract: Cities are responsible for around 75% of global primary energy use and 70% of global greenhouse gas (GHG) emissions, with buildings and urban mobility being two key contributors. Actions to reduce GHG emissions have been promoted and implemented in many countries in the world. These include switching to electric vehicles (EVs) and renewable energy sources (RES), such as solar photovoltaics (PV). The transition has led to rapid increase in EV and PV adoption worldwide in the recent decades. However, large-scale integration of EVs and PV in urban energy systems poses new challenges such as increased peak loads, power mismatch, component overloading, and voltage violations. Improved synergy between EVs, PV and other loads can overcome these challenges. Coordinated charging of EVs, or so-called EV smart charging, is potentially a promising solution to improve the synergy. The synergy can be further enhanced with vehicle-to-grid (V2G) schemes, where an EV can not only charge, but also discharge power from its battery. This doctoral thesis investigates the synergy between EV charging and PV power generation with the application of EV smart charging and V2G schemes. The investigation was carried out through simulation studies on the system levels of residential buildings, workplaces, distribution grid, and city-scale. Smart charging and V2G optimization models with an objective to reduce the net-load (load minus generation) variability were developed and simulated. The results show that the PV-EV synergy can be improved with the proposed smart charging schemes. However, the levels of improvement depend highly on the user mobility behavior from and to the destined charging locations. PV-EV synergy is limited in residential buildings due to low EV occupancy during high solar power production, but has high potential at workplace charging stations due to high EV occupancy during the same time. In the case studies presented in this thesis, it was found that the implementation of smart charging can improve the synergy by up to around 9 percentage points in residential buildings and up to around 40 percentage points in workplaces. On a city-scale level, both optimal sizing and V2G play essential roles in improving city-scale generation-load synergy, as they can increase the load matching from 33% to 84%. The results also show that improved synergy leads to enhanced power grid performance and combined PV-EV grid hosting capacity.In conclusion, the thesis demonstrates that EV smart charging schemes can improve PV-EV synergy, leading to enhanced performance of urban energy systems.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.