Neuropeptides and neurotrophins in arthritis : studies on the human and mouse knee joint

Abstract: Neuropeptides, such as substance P (SP) and bombesin/gastrin-releasing peptide (BN/GRP), and neurotrophins are involved in neuro-immunomodulatory processes and have marked trophic, growth-promoting and inflammation-modulating properties. The impact of these modulators in rheumatoid arthritis (RA) is, however, unclear. An involvement of the innervation, including the peptidergic innervation, is frequently proposed as an important factor for arthritic disease. Many patients with RA, but not all, benefit from treatment with anti-TNF medications. The studies presented here aimed to investigate the roles of neuropeptides, with an emphasis on BN/GRP and SP, and neurotrophins, especially with attention to brain-derived neurotrophic factor (BDNF), in human and murine knee joint tissue. The expression patterns of these substances and their receptors in synovial tissue from patients with either RA or osteoarthritis (OA) were studied in parallel with the levels of these factors in blood and synovial fluid from patients with RA and from healthy controls. Correlation studies were also performed comparing the levels of neuropeptides with those of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6)]. Furthermore, the impact of anti-TNF treatment on the levels of BDNF in blood was investigated. In a murine model of RA, the expression of these substances on articular chondrocytes along with their expression in synovial tissue was investigated. The expression of BN/GRP in human synovial tissue was confined to fibroblast-like and mononuclear-like cells whereas SP was detected in nerve-related structures. Receptors for these neuropeptides (GRP-R and NK-1R) were frequently present in blood vessel walls, and on fibroblast-like and mononuclear-like cells. The expression of BDNF and its receptors, p75 neurotrophin receptor and TrkB, was mainly confined to nerve structures. The levels of SP, and particularly those of BN/GRP, in synovial fluid and peripheral blood correlated with the levels of pro-inflammatory cytokines. There were clearly more correlations between SP-BN/GRP and inflammatory parameters than between BDNF and these factors. Plasma levels of BDNF were decreased following anti-TNF-treatment. In the joints of the murine model, there was a marked expression of neurotrophins, neurotrophin receptors and NK-1R/GRP-R in the articular chondrocytes. The expression was down-regulated in the arthritic animals. A neurotrophin system was found to develop in the inflammatory infiltrates of the synovium in the arthritic mice. The results presented suggest that there is a local, and not nerve-related, supply of BN/GRP in the human synovial tissue. Furthermore, BN/GRP and SP have marked effects in the synovial tissue of patients with RA, i.e., there were abundant receptor expressions, and these neuropeptides are, together with cytokines, likely to be involved in the neuro-immunomodulation that occurs in arthritis. The observations do on the whole suggest that the neuropeptides, rather than BDNF, are related to inflammatory processes in the human knee joint. A new effect of anti-TNF treatment; i.e., lowering plasma levels of BDNF, was observed. Severe arthritis, as in the murine model, lead to a decrease in the levels of neurotrophin, and neurotrophin and neuropeptide receptor expressions in the articular cartilage. This fact might be a drawback for the function of the chondrocytes. Certain differences between the expression patterns in the synovial tissue of the murine model and those of human arthritic synovial tissue were noted. It is obvious that local productions in the synovial tissue, nerve-related supply in this tissue and productions in chondrocytes to different extents occur for the investigated substances.