Studies on the transmembrane signaling of β1 integrins

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: Integrins are heterodimeric cell surface receptors, composed of an α and a β subunit, mainly binding for extracellular matrix proteins. lntegrin subunit β1 can combine with at least 12 a subunits and thus form the biggest subfamily within the integrin family. In this thesis, functional properties of the splice variant β1Β, and the effects of several mutations in the cytoplasmic tail of integrin subunit β1Α were studied. In addition, the border between the transmembrane and cytoplasmic domains of several integrin subunits was determined.The β1Β splice variant has been reported to have a dominant negative effect on functions of β1Α integrins. In this study, it was studied if the expression of β1Β had similar negative effects on the αvβ3 integrin functions since the β3 subunit is structurally similar to β1Α. The β1Β subunit was expressed in an integrin β1-deficient cell line and it was found that the presence of β1Β does not interfere with adhesion or signaling of endogenous αvβ3The border between the cytoplasmic domain and the C-terminal end of the transmembrane domain of integrin α and β subunits has been unclear. This question was experimentally addressed for integrin subunits β1, β2, α2 and α5. It was found that integrin subunits contain a positively charged lysine, which is embedded in the membrane in the absence of interacting proteins.The functional importance of the lysine in integrin transmembrane domains was investigated by mutating this amino acid to leucine in β1Α. The mutation affected cell spreading and tyrosine phosphorylation of the adapter protein CAS. The activation of focal adhesion kinase and tyrosine phosphorylation of paxillin was not affected. Furthermore, the mutation of two tyrosines to phenylalanines in the β1Α cytoplasmic tail was found to reduce the capability of β1Α integrins to mediate cell spreading and migration. Activation of focal adhesion kinase in response to the later β1Α mutant was shown to be impaired as well as tyrosine phosphorylation of adapter proteins paxillin and tensin whereas overall tyrosine phosphorylation of CAS was unaffected. These data suggests the presence of focal adhesion kinase-dependent and -independent pathways for tyrosine phosphorylation of CAS after integrin β1Α-mediated adhesion.